HISTORIA DE LOS COMPUTADORES

11.06.2014 00:32

HISTORIA DE LOS COMPUTADORES

El hombre aprendió a contar con los dedos. Es la forma más fácil, la más asequible y la primera que se le ocurre hasta a los niños de hoy en día. Al tener diez dedos entre las dos manos, la base 10 se convirtió en la base numérica más usada. Para representar números mayores que diez se usaron diversos métodos, desde un auxiliar que contara con otros diez dedos hasta extenderse a las falanges, los dedos de los pies, los brazos u otras partes del cuerpo. Algunos pueblos (sobre todo entre los mesopotámicos) utilizaron otros sistemas de numeración, principalmente en base 60 (sexagesimales). Pero la base 10 y el sistema posicional triunfaron como expresión numérica, especialmente después de la introducción de la numeración arábiga.

El sistema de numeración parece que fue inventado por los hindúes en los siglos I o II d.C. Los árabes lo tomaron de ellos y lo transmitieron a la península ibérica; desde allí fue pasando al resto de Europa, donde el primero que usó la numeración arábiga fue el monje Geribert D’Aurillac, posteriormente Papa Silvestre II (h. 938-1003), siendo generalizado por el matemático italiano Leonardo Fibonacci (h. 1175-1240) en su celebérrimo Liber abaci (ca. 1202), en el que muestra los conocimientos aprendidos de los árabes durante sus viajes. La numeración arábiga es, sin duda, mucho más flexible para el cálculo que la numeración romana, e introduce en el cálculo el concepto de valor posicional del número, decisivo a la hora de enfrentarse con grandes cantidades.

LAS MÁQUINAS CALCULADORAS (500 a.C. - 1822 d.C.)

La historia conocida de los artefactos que calculan o computan, se remonta a muchos años antes de Jesucristo. Esta sección comienza desde la aparición del ábaco en China y Egipto, hasta la invención del Motor Diferencial de Charles Babbage, en 1822. El descubrimiento de los sistemas, por Charles Napier, condujo a los avances en las calculadoras. Al convertir la multiplicación y división en sumas y restas, una cantidad de máquinas (incluyendo la regla deslizante) puede realizar estas operaciones. Babbage sobrepasó los límites de la ingeniería cuando inventó su motor, basado en este principio. En esta etapa se inventaron:

EL ÁBACO

LAS TABLAS DE MULTIPLICAR DE NAPIER

A principios del siglo XVI el nuevo sistema de numeración decimal desplazó al sistema romano para efectuar cálculos complicados. Pero la novedad incluía un aprendizaje, y operaciones tan simples como dividir requerían de un profesional de las matemáticas.

John Napier (1550-1617), matemático escocés, realizó dos grandes contribuciones al cálculo: el descubrimiento de los logaritmos y la construcción de las primeras tablas de multiplicar. Ambos descubrimientos facilitaron notablemente las operaciones con los números arábigos.

LA REGLA DESLIZANTE DE CÁLCULO

Basadas en los logaritmos, se construyeron las primeras reglas de cálculo, primeras máquinas analógicas de cálculo. Todas derivan de dos prototipos construidos por Edmund Gunter (1581-1626), matemático y astrónomo inglés, y William Ougthred (1574-1660). La regla deslizante era un juego de discos rotatorios que se calibraban con los logaritmos de Napier. Es uno de los primeros aparatos de la informática analógica.

LA CALCULADORA MECÁNICA

En 1623 fue diseñada por Wilhelm Schickard, en Alemania, la primera calculadora mecánica. Llamado "El Reloj Calculador", la máquina incorporaba los logaritmos de Napier, y hacía rodar cilindros en un gran albergue. Se comisionó un Reloj Calculador para Johannes Kepler, el famoso matemático, pero fue destruido por el fuego antes que se terminara.

LA PASCALINA

El inventor y pintor Leonardo Da Vinci (1452-1519) trazó las ideas para una sumadora mecánica.

Ideas iniciales de Leonardo da Vinci para una sumadora mecánica

Siglo y medio después, en 1642, el filósofo y matemático francés Blaise Pascal (1623-1662) por fin inventó y construyó la primera sumadora mecánica.

Blaise Pascal (1623-1662)

Se le llamó Pascalina, y funcionaba como una maquinaria compuesta por varias series de ruedas dentadas accionadas por una manivela. La primera rueda correspondía a las unidades, la segunda a las decenas, etc., y cada vuelta completa de una de las ruedas hacía avanzar 1/10 de vuelta a la siguiente. La máquina funcionaba por el principio de adición sucesiva; mediante otro procedimiento, incluso restaba. 

LA MÁQUINA LÓGICA

La primera máquina lógica fue inventada en 1777 por Charles Mahon, el Conde de Stanhope. El "demostrador lógico" era un aparato tamaño bolsillo que resolvía silogismos tradicionales y preguntas elementales de probabilidad. Mahon es el precursor de los componentes lógicos en las computadoras modernas.

LA PRIMERA TARJETA PERFORADA

La industria textil va a proporcionar el primer ejemplo de suministro de datos variables para el funcionamiento automático de una máquina. La complejidad de los dibujos de las telas, junto con la gran cantidad de husos necesarios para realizarlos, hará que se piense en un método de mecanizar el rutinario trabajo de intercambio de distintas tramas y urdimbres.

 

LA MÁQUINA ANALÍTICA DE BABBAGE

Charles Babbage (1793-1871), Padre la las computadoras modernas, visionario inglés y profesor matemático de la Universidad de Cambridge, hubiera podido acelerar el desarrollo de las computadoras si él y su mente inventiva hubieran nacido 100 años después.

La idea que tuvo Babbage sobre un computador nació debido a que la elaboración de las tablas matemáticas era un proceso tedioso y propenso a errores. Adelantó la situación del hardware computacional al inventar la "máquina de diferencias", capaz de calcular tablas matemáticas. 

 

 

La Quinta Generación (desde 1991) 
Las aplicaciones exigen cada vez más una mayor capacidad de procesamiento y almacenamiento de datos. Sistemas especiales, sistemas multimedia (combinación de textos, gráficos, imágenes y sonidos), bases de datos distribuidas y redes neutrales, son sólo algunos ejemplos de esas necesidades. Una de las principales características de esta generación es la simplificación y miniaturización del ordenador, además de mejor desempeño y mayor capacidad de almacenamiento. Todo eso, con los precios cada vez más accesibles. La tecnología VLSI está siendo sustituida por la ULSI (ULTRA LARGE SCALE INTEGRATION).El concepto de procesamiento está yendo hacia los procesadores paralelos, o sea, la ejecución de muchas operaciones simultáneamente por las máquinas. La reducción de los costos de producción y del volumen de los componentes permitió la aplicación de estos ordenadores en los llamados sistemas embutidos, que controlan aeronaves, embarcaciones, automóviles y ordenadores de pequeño porte. Son ejemplos de esta generación de ordenadores, los micros que utilizan la línea de procesadores Pentium, de INTEL.


1993- Nace el Pentium

Grandes cambios en este periodo se darían debido a las memorias DIMM de 108 pines, a la aparición de las placas de video AGP y a un perfeccionamiento de los slots PCI mejorando aún más su performance.

1997- El Pentium II 
1999- El Pentium III 
2001- el Pentium 4


CPU Intel Pentium 4

 

Actualidad

Hoy en día sólo han quedado dos combatientes en el terreno de los procesadores para computadoras, Intel y AMD. Entre ambos fabricantes cubren casi la totalidad de la necesidades de proceso de cómputo en ámbitos como el hogar, la oficina y la industria, y han puesto en el mercado CPUs con velocidades y rendimientos imposibles de imaginar tan sólo una década atrás.

Entre lo más destacados productos de estas firmas podemos mencionar losprocesadores Intel Core, en sus variantes i3, i5 e i7 de dos o cuatro núcleos y velocidades de reloj que superan ampliamente los 3.4 Ghz. En cuanto a AMD, su modelo Fusion es uno de los diseños más avanzados, ya que logra combinar en la misma cápsula de la CPU al chip gráfico. Otro acierto de la firma es el Phenom II,el cual puede llegar a montar en su interior hasta 6 núcleos corriendo a 3.6 Ghz.

AMD Phenom II


El Futuro - Aquí viene el ordenador cuántico 
 

IBM anunció la construcción del más avanzado ordenador cuántico del mundo. La novedad representa un gran paso en relación al actual proceso de fabricación de chips con silicio que, de acuerdo con especialistas, debe alcanzar el máximo de su limitación física de procesamiento entre 10 y 20 años. El ordenador cuántico usa, en lugar de los tradicionales microprocesadores de chips de silicio, un dispositivo basado en propiedades físicas de los átomos, como el sentido de giro de ellos, para contar números uno y cero (bits), en vez de cargas eléctricas como en los ordenadores actuales. Otra característica es que los átomos también pueden sobreponerse, lo que permite al equipamiento procesar ecuaciones mucho más rápido.

La sexta generación de las computadoras

Al respecto de este punto, a principios de la década de los 80, era prácticamente imposible encontrar un hogar que tuviera una computadora. Este panorama ha cambiado radicalmente, al punto que es prácticamente imposible encontrar un lugar en el mundo en donde una computadora no se encuentre realizando una tarea.

 

Todo se inció en los albores de la década del 40 con ENIAC, y la última etapa de la quinta generación de computadoras fue anunciada como la de las "computadoras inteligentes" basadas en Inteligencia Artificial, iniciada por un famoso proyecto en Japón, y que finalizó en un estrepitoso fracaso; a partir de ahí, la cuenta de las generaciones de computadoras es un poco confusa.


La sexta generación  se podría llamar a la era de las computadoras inteligentes basadas en redes neuronales artificiales o "cerebros artificiales". Serían computadoras que utilizarían superconductores como materia-prima para sus procesadores, lo cual permitirían no malgastar electricidad en calor debido a su nula resistencia, ganando performance y economizando energía. La ganancia de performance sería de aproximadamente 30 veces la de un procesador de misma frecuencia que utilice metales comunes.

 

Todo esto está en pleno desarrollo, por el momento las únicas novedades han sido el uso de procesadores en paralelo, o sea, la división de tareas en múltiples unidades de procesamiento operando simultáneamente. Otra novedad es la incorporación de chips de procesadores especializados en las tareas de vídeo y sonido.

 

Esta manía de enumerar las generaciones de computadoras parece que se ha perdido. Ya no suceden, como ocurrió en las cuatro primeras generaciones, la sustitución de una generación de computadoras por las siguientes. Muchas tecnologías van a sobrevivir juntas, cada una en su sector de mercado.

Es una realidad que los chips son cada vez más chicos, rápidos y eficientes... será la característica de la séptima generación de computadoras?